Markov Chain II

Aug 1, 2022

Markov Chain review

- Markov Property $P(\mathbb{Z}_{N+1}=j|\mathbb{Z}_{N}=i) = P(\mathbb{Z}_{M+1}=j|\mathbb{Z}_{N}=i,\mathbb{Z}_{N})$
- State Space $S = \{H, T\}$, $S = \{1, 2, \dots, b\}$
- Transition Probability $P(i,j) = P_{ij} P(X_{mi} = j | X_n = i)$
- Balance Equation TP = TV the solution T is invahiant dist.
 - Invariant distribution (aka, stationary distribution, steady state distribution)
- Irreducible MC has unique Invariant distribution
- Irreducible and aperiodic MC has $\pi_n \to \pi, n \to \infty$
- Long- term fraction of time of state *i*

$$\lim_{N\to\infty} \left\{ \frac{1}{N} \mathbb{I} \{ X_n = i \} \right\} = \pi(i)$$

invariant distribution

Given an irreducible MC, if it contains self loop, then it is aperiodic

- The reserve is not true.
 - counterexample, random walk on a triangle

aperiodic MC d(i):=gid &nz1 | pⁿ(i,i) >>> d=1 then MC is apeniodic d>1 then MC is periodic uppeniod d Ar

$$\pi_{0} = (0, 1, 0) \quad \pi_{1} = (1/2, 0, \frac{1}{2}) \quad \pi_{2} = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$$

P = 0 0.5000 0.5000 0.5000 0 0.5000 0.5000 0.5000 0	d=grod { 2,3,4,5 so 1-andorn walk =	$i_1 \cdots j_n = 1$ n atnangle is apenlodic
>> P^2	>> P^4	>> P^6
ans =	ans =	ans =
0.50000.25000.25000.25000.50000.25000.25000.25000.5000	0.3750 0.3125 0.31 0.3125 0.3750 0.31 0.3125 0.3125 0.37	125 0.3438 0.3281 0.3281 125 0.3281 0.3438 0.3281 750 0.3281 0.3281 0.3438
>> P^3	>> P^5	>> P^7
ans =	ans =	ans =
0.2500 0.3750 0.3750 0.3750 0.2500 0.3750 0.3750 0.3750 0.2500	0.3125 0.3438 0.34 0.3438 0.3125 0.34 0.3438 0.3438 0.32	4380.32810.33590.33594380.33590.32810.33591250.33590.33590.3281
	>> P^100	
	ans =	
	0.3333 0.3333 0.3 0.3333 0.3333 0.3 0.3333 0.3333 0.3	3333 3333 3333

Given an irreducible MC, if it is aperiodic, then $\pi_n \to \pi, n \to \infty$

- The reserve is not true
 - Counterexample: random walk on a square

D	_
Г	

(0 0.5000 0 0.5000	0.5000 0 0.5000 0	0 0.5000 0 0.5000	0.5000 0 0.5000 0	J		
>>	P^2					>> P^3	
ans	5 =					ans =	
	0.5000 0 0.5000 0	0 0.5000 0 0.5000	0.5000 0 0.5000 0	0 0.5000 0 0.5000		0 0.5000 0 0.5000	0.5000 0 0.5000 0
>>	P^4					>> P^5	
ans	5 =					ans =	
	0.5000 0 0.5000 0	0 0.5000 0 0.5000	0.5000 0 0.5000 0	0 0.5000 0 0.5000		0 0.5000 0 0.5000	0.5000 0 0.5000 0

$$T_{f} = T_{o}P$$

0 0.5000 0 0.5000 0.5000 0 0.5000 0

Example 1

A MC with outgoing arrows are equally likely

- 1) Is it irreducible? 🧹
- 2) Write transition probability $\sqrt{V_{ij}}$
- 3) What's the most frequently visited state?

Example 1

A MC with outgoing arrows are equally likely

- 1) Is it irreducible?
- 2) Write transition probability
- 3) What's the most frequently visited state?

 $\pi(1) = \pi(3) + \frac{1}{3}\pi(4)$ $\pi(z) = \frac{1}{2}\pi(1) + \frac{1}{2}\pi(4) + \frac{1}{2}\pi(5)$ $\pi(3) = \pi(2) + \frac{1}{2}\pi(5)$ $\Rightarrow \pi = \frac{1}{39}(12,9,0,6,2)$ $\pi(4) = \underline{\lambda}\pi(1)$ $\pi(t) = \frac{1}{2}\pi(4)$ $Max_{i} \pi(i) = \pi(i)$ $T_{(1)} + T_{(2)} + \cdots + T_{(5)} = 1$

so A is the most frequently visited.

Start at A, how many steps does it take to reach E?

Hitting time of E starting at i is defined as $T_{\rm E} \leftarrow \alpha$ random variable $\beta(i) \coloneqq \mathbb{E}(T_E | X_0 = i) \text{ for } i = A, B, C, D, E$ $\beta(C) = |+\beta(A)|$ $\beta(B) = 1 + \beta(C)$ B(E) = 0Goal: to calculate $\beta(A) \coloneqq \mathbb{E}(T_E | X_0 = A)$

* B(i) is always a function of the goal state. if goal state is not E anymore, FSE needs to be set up again

Hitting time of E starting at *i* is defined as (i) := $\mathbb{E}(T_E | X_0 = i)$ for i = A, B, C, D, E1/3 $B(A) = [1+\frac{1}{2}B(B) + \frac{1}{2}B(D)$ BLB) - T+BLC) B(C) = 1+ B(A) B(D) = 1+ シB(A) + シB(B) + シB(E) 6(G) E(TE (X, =E) =0 need one step to move from A to B or D. B(B) = 19, B(C) = 18 B(D) = 13B(A)=17) Goal: to calculate $\beta(A)$

1/2

vst step equation

13 B(E)=0

$) = \mathbb{E}(T_E | \boldsymbol{X}_0 = A)$

B(5) = 6

Example 3

Toss a fair 6 face dice, on average, how many times we need to toss until we have the product of two number in a row is 12?

$$\beta(E) = 0$$

 $\beta(S) = 1 + \frac{1}{3}\beta(E)$
 $\beta(A) = (+ \frac{2}{3}\beta(B))$
 $\beta(B) = 1 + \frac{1}{3}\beta(B)$

$$\exists \beta(5) = 10.5 = \frac{24}{2}$$

(A)+ならしB) 3)+ショらしA) 3)+ちらしA)+ん

What's the probability that we start at A and we visit C before we visit E

Define: arriving at C before E $\alpha(i) \coloneqq \mathbb{P}(T_c < T_E | X_0 = i) \text{ for } i = A, B, C, D, E$ Goal: to calculate $\alpha(A) \coloneqq \mathbb{P}(T_c < T_E | X_0 = A)$

Example 1.

Goal: to calculate $\alpha(A) \coloneqq \mathbb{P}(T_c < T_E | X_0 = A)$

 $\chi(B) = \chi(C) = |$ $50 \ \alpha(A) = \frac{1}{2} + \frac{1}{2} \alpha(D)$ $\alpha(0) = \frac{1}{2}\alpha(A) + \frac{1}{2}$ $\chi(A) = \frac{1}{2} + f \alpha(A) + \frac{1}{6} \times 6$ 5d(A) = 4 $\chi(4) = \frac{4}{\epsilon}$

General First Step Equation (1)

For a Markov Chain on state space $S = \{1, 2, ..., K\}$ with transition probability P, let T_i be the hitting time of state i. For a set $A \subset S$ of states, let $T_A = \min\{n \ge 0 | X_n \in A\}$ be the hitting time of the set A.

1) We consider the mean value of T_A $\beta(c) = E(T_A | \mathcal{X}_o - c), \ c \in S$ $FSE = g(i) = \zeta I + \zeta P(i,j) \beta(j) \quad if \quad i \notin A$ $f = \zeta O \quad if \quad i \notin A$

General First Step Equation (2)

For a Markov Chain on state space $S = \{1, 2, ..., K\}$ with transition probability P, let T_i be the hitting time of state i. For a set $A \subset S$ of states, let $T_A = \min\{n \ge 0 | X_n \in A\}$ be the hitting time of the set A.

2) We consider the probability of hitting set A before B ABCS, ANB=\$, Lot X(i)= PLTACTB (E,=i) ies if i eA if i eB

General First Step Equation (3)

3) We consider collecting an amount of h(i) every time visiting state i before visiting state A

$$Y = \sum_{n=0}^{T_A} h(\boldsymbol{X}_n)$$

$$Y(i) := \text{IE}(Y|E_0 = i) \quad i \in S$$

$$FSE : Y(i) = \begin{cases} h(i) + \sum_{j=1}^{n} P(i,j) \quad y(j), \text{ if } i \notin A \\ h(i) \quad i \notin i \notin A \end{cases}$$

hitting fime is the case where hi) = I Ui

Not required *

General First Step Equation (4)

4) We consider a discount factor β for moving one step

$$Z = \sum_{n=0}^{T_A} \beta^n h(X_n)$$

$$S(i) := \mathbb{E} \left(2 | X_0 = i \right)$$

$$FSE : S(i) = \begin{cases} h(i) + \beta \sum_{j} P(i,j) S(j) & \text{if } i \\ h(i) & \text{if } i \end{cases}$$

Not required *

